(-8x^2-6x+4)/(2x+1)=0

Simple and best practice solution for (-8x^2-6x+4)/(2x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-8x^2-6x+4)/(2x+1)=0 equation:



(-8x^2-6x+4)/(2x+1)=0
Domain of the equation: (2x+1)!=0
We move all terms containing x to the left, all other terms to the right
2x!=-1
x!=-1/2
x!=-1/2
x∈R
We multiply all the terms by the denominator
(-8x^2-6x+4)=0
We get rid of parentheses
-8x^2-6x+4=0
a = -8; b = -6; c = +4;
Δ = b2-4ac
Δ = -62-4·(-8)·4
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{41}}{2*-8}=\frac{6-2\sqrt{41}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{41}}{2*-8}=\frac{6+2\sqrt{41}}{-16} $

See similar equations:

| 66+7x=52 | | -96=-8(x-1)-5x | | -1=17+a | | 6(5n-3)-7=155 | | |2x-1|=2x+1 | | 4(x+5)+5=25 | | -132=-3(4+5k) | | t1/2t+8=5/2t-10 | | 16=v/8 | | 12(2+m)=6(4m+3) | | 15x+60=3x | | 70+45+x=180 | | /-8t-3t+2=-5t-6t | | -11n=-99 | | 217.39+.15(217.39=x | | 16m-13m=18 | | -224=-6(10p-11)-10 | | 9k2+20k+4=0 | | 5p-14=p+4 | | (2/5)x=13/5 | | x/3.7=11.04 | | X+.15x=250000 | | X+67+x+119=168 | | 4x^2=7(4x-7) | | 4x+2.4-x=22.8 | | 4/6=18/n | | 4=-2(d–7)–2 | | 3=-2(x+10)+13 | | 27=-9(w+8) | | 5×-8y=20 | | −5y=6 | | 5y=6=3y-14 |

Equations solver categories